<i>Inputs:</i> _{WL := 5}	nsf (Wil	ind load)			Stand Alone Glass (with Base S			tail Ref. 2-0091	Sheet No:
P := 200		oint load)				51100)	A4/	2-0091	2
W _h := 4.17		orizontal unifo	orm load)	1	lse 1/2" Glass, Fully Te	mpered	٦		
$W_{V} := 0$		ertical uniform		ν	vith polished edges				
wγ.= 0 h := 38		eight of rail)	noud)	Λ	Ainimum Glass Lite Widt	h: 3'-0" *			
			lite width)*		*Noto: norrowor widtha may ba	oguivalant			
w := 36		iinimum glass			*Note: narrower widths may be to the minimum glass width,				
t := 0.469		lass equivale			if a top channel or handrail is p transfer the live loads to the ac				
Fg := 6000	1		e bending stress)						
F _{gw} := 6000	1		e bending stress	WL)					
Eg := 10400000	-	ass modulus (
S:= 12		istener spacir	ng)						
Calculations								+ + +	
$l_{g1} := \frac{\min(h, w) \cdot t}{12}$	3 = 0.309	9 in ⁴ Sg	$1 := \frac{\min(h, w) \cdot t^2}{2}$	= 1.320	in ³			C III	
12			0						
$l_{g2} := \frac{S \cdot t^3}{12} = 0.10$	03 in ⁴	Sg	$2 := \frac{S \cdot t^2}{6} = 0.440$) in ³					
Point Load:									
$M_{g1} := P \cdot h$	Ν	Mg1 = 7600	in·lb						
$f_{g1} := \frac{M_{g1}}{S_{g1}}$		f _{g1} = 5759	psi	deflect al	nder full design load, the pout 1-3/16", this is acce A E2358 deflection limits	eptable			
$\Delta_{g1} \coloneqq \frac{P \cdot h^3}{3 \cdot E_g \cdot I_{g1}}$	2	Δ g1 = 1.137	in		r please verify the deflec			ts	
Uniform Load:			-				,		
$\Delta_{g2} := \frac{\left(W_{h} \cdot S\right) \cdot h}{3 \cdot E_{g} \cdot I_{g2}}$	3 	Δ g2 = 0.85	3 in						
$M_{g2} := \left(W_{h} \!\cdot\! s\right) \!\cdot\! h$	+ W _V ·S·Δ	∆ _{g2} = 1902	in·lb	Re	actions from Point	t Load:		⊢VV-4	
$f_{g2} := \frac{M_{g2}}{S_{g2}}$	f	fg2 = 4322	psi		Vp := P		V _p = 200	lb	
Wind Load:					Mp := Mg1	n	M _p = 7600) in·lb	
$W_{WL} := \frac{WL \cdot S}{144}$	٧	WWL = 0.42	pli			-		-	
Www.b ²				Re	eactions from Wind	l or Unifor	rm Loa	ad:	
$M_{g3} := \frac{W_{WL} \cdot h^2}{2}$		Mg3 = 301	in∙lb		$V_{W} := max \left(W_{WL} \cdot h, \frac{Mg2}{h} \right)$		V _W = 50	lb	
$\Delta_{g3} := \frac{W_{WL} \cdot h^4}{8 \cdot E_g \cdot I_{g2}}$	2	$\Delta_{g3} = 0.101$	in		$M_{W} := \max(M_{q2}, M_{q3})$	1	M _W = 1902	2 in·lb	
$f_{g3} := \frac{M_{g3}}{S_{g2}}$		fg3 = 684	psi		mw.= max(mg2,mg3)	Ľ	1W = 1001		
$\Delta_{\text{all}} \coloneqq \frac{h}{24} + \frac{w}{96}$	2	$\Delta_{all} = 1.96$	in Gl	_ASS := "0	DK" if $\frac{\max(f_{g1}, f_{g2})}{F_g} \le 1 \land \frac{f_g}{F_g}$	$\frac{1}{3}$ gw $\leq 1 \land \frac{\max(2)}{3}$	Δ_{g1}, Δ_{g2} Δ_{all}	$(\Delta g_3) \leq 1$	
				"F	AILS" otherwise			GLAS	6S = "OK"
DICE		105.5	School Creek Trail	Project De	scription:	Job No:		R16-10-103	
<u>RICE</u>		Luxe	mburg, WI 54217 e: (920) 617-1042	Moro	e Industries - Base	Engineer:	JJM	Sheet No:	2
ENGIN	EEKIN	Fax:	(920) 617-1100		Shoes	Date: 12	2/28/16	Rev:	
Template: RE	I-MC-57	'37 ^{ww}	w.rice-inc.com		01000	Chk By:		Date:	

Inputs:

N:= 4		(Number of Fasteners Effective at Ends)
t _S := 0.75	in	(Wall Thickness of Shoe)
H:= 4.118	in	(Height of Base)
W:= 2.5	in	(Width of Base)
w = 36	in	(Minimum Glass Lite Width)

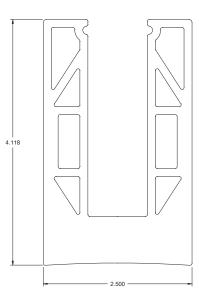
C_f := 0.85 (Crushing Factor Required)

Outputs: (From Previous Sheet)

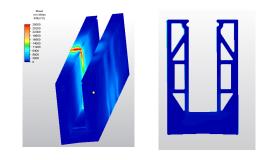
V _p = 200	lb	(Shear From Point Load)
M _p = 7600	in∙lb	(Moment From Point Load)
$V_W = 50$	lb	(Shear From Wind/Uniform Load)
$M_{W} = 1902$	in∙lb	(Moment From Wind/Uniform Load)
S = 12	in	(Fastener Spacing)
h = 38	in	(Height From Top of Rail to Top of Base)

Calculations:

$M_{tot1} := M_p + V_p \cdot H$	M _{tot1} = 8424	in∙lb
$M_{tot2} := M_W + V_W \cdot H$	$M_{tot2} = 2108$	in∙lb


Anchors to Concrete:

$M_1 := \frac{M_{tot1}}{N} \cdot 1.6 \cdot (3)$	M ₁ = 10108	in∙lb
$V_1 := \frac{V_p}{N} \cdot 1.6 \cdot (3)$	V ₁ = 240	lb
$M_2 := M_{tot2} \cdot 1.6 \cdot (3)$	M ₂ = 10116	in∙lb
$V_2 := V_W \cdot 1.6 \cdot (3)$	V ₂ = 240	lb


SEE HILTI PROFIS OR POWERS PDA DATA

Use 1/2" Dia. SS Hilti Kwik Bolt TZ or Equal				
300 Series Stainless Steel				
Embedment: 3-5/8" Min.				
Edge Distance: 4"				
2nd Edge Distance: 4"				
Spacing: 12"				
Min. Slab Thickness: 8"				
Concrete Strength: f'c= 4,000 psi, Cracked Concrete				
Install per Manufacturer's instructions				

Stand Alone Glass Balustrade	Detail Ref.	Sheet No:	
(with Base Shoe)	A42-0091	2 A	

Base Shoe Analysis:

Use Extruded Aluminum Base Shoe As Shown 6005-T5 Alloy Minimum

Anchors to Steel:

$T_1 := \frac{M_{tot1}}{N \cdot W \cdot 0.5 \cdot C_f}$	T ₁ = 1982	lb
$V_3 := \frac{V_p}{N}$	V3 = 50	lb
$T_2 := \frac{M_{tot2}}{W \cdot 0.5 \cdot C_f}$	T ₂ = 1984	lb
$V_4 := V_W$	V4 = 50	lb
T _{all} := 5676	T _{all} = 5676	lb
V _{all} := 2984	$V_{all} = 2984$	lb
$I := \left(\frac{max(V_3, V_4)}{V_{all}}\right)^2 + \left(\frac{max(T_1}{T_{all}}\right)^2 + \left(\frac{max(T_1, V_2)}{V_{all}}\right)^2 + \left(m$	$\left(,T_{2}\right)$	I = 0.12 < 1.0
<u>Use 1/2-13 S.S. Cap So</u> (300 Series S.S., Cond.	c <u>rews @ 12</u> CW, Fy = 6	2 " O.C. 85 ksi)

RICE		105 School Creek Trail	Project Description:	Job No:		R16-10-103	
		Luxemburg, WI 54217 Phone: (920) 617-1042	Morse Industries - Base	Engineer:	JJW	Sheet No:	2 A
ENGINEERING		Fax: (920) 617-1100	Shoes	Date:	12/28/16	Rev:	
Template:	REI-MC-5737	www.rice-inc.com	Silves	Chk By:		Date:	

1

7/11/2017

www.hilti.us

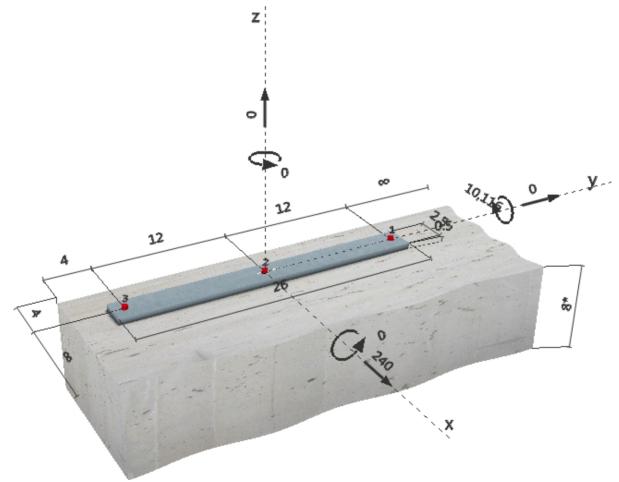
Company: Specifier: Address: Phone I Fax: E-Mail:

Specifier's comments:

I

1 Input data

Anchor type and diameter:	Kwik Bolt TZ - SS 316 1/2 (3 1/4)
Effective embedment depth:	h _{ef} = 3.250 in., h _{nom} = 3.625 in.
Material:	AISI 316
Evaluation Service Report:	ESR-1917 SAFESET
Issued I Valid:	6/1/2016 5/1/2017
Proof:	Design method ACI 318 / AC193
Stand-off installation:	$e_b = 0.000$ in. (no stand-off); t = 0.500 in.
Anchor plate:	$I_x \times I_y \times t = 2.500$ in. x 26.000 in. x 0.500 in.; (Recommended plate thickness: not calculated
Profile:	no profile
Base material:	cracked concrete, 4000, f _c ' = 4000 psi; h = 8.000 in.
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	no


Page:

Date:

Project:

Sub-Project I Pos. No.:

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos. No.: Date:

7/11/2017

2

2 Load case/Resulting anchor forces

Ι

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y		
1	2993	80	80	0		
2	2993	80	80	0		
3	2993	80	80	0		
max. concrete co		0.43 [‰]				
max. concrete co	max. concrete compressive stress: 1867 [psi]					
resulting tension force in (x/y)=(0.000/0.000): 8978 [b] resulting compression force in (x/y)=(1.127/0.000): 8978 [b]						

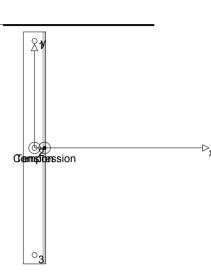
	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	2993	8665	35	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	8978	10263	88	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-1917
φN _s	_a ≥ N _{ua}	ACI 318-08 Eq. (D-1)

Variables


A _{se,N} [in. ²]	f _{uta} [psi]
0.10	115000
Calculations	

Calculations

N _{sa} [lb]	
11554	

Results

N _{sa} [lb]	∲ steel	φ N _{sa} [lb]	N _{ua} [lb]
11554	0.750	8665	2993

www.hilti.us		Profis Anchor 2.
Company:	Page:	3
Specifier:	Project:	
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	7/11/2017
E-Mail:		

3.2 Concrete Breakout Strength

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-08 Eq. (D-5)
φ N _{cbg} ≥ N _{ua} A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	ACI 318-08 Eq. (D-1)
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\min}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{b} = k_{c} \lambda \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
3.250	0.000	0.000	4.000	1.000		
c _{ac} [in.]	k _c	λ	f _c [psi]			
6.000	17	1	4000			
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	$\Psi_{cp,N}$	N _b [lb]
251.83	95.06	1.000	1.000	0.946	1.000	6299
Results						

N _{cbg} [lb]	∮ concrete	φ N _{cbg} [lb]	N _{ua} [lb]
15789	0.650	10263	8978

www.hilti.us			Profis Anchor	2.7.
Company:		Page:	4	
Specifier:		Project:		
Address:		Sub-Project I Pos. No.:		
Phone I Fax:		Date:	7/11/2017	
E-Mail:	·			

4 Shear load

	Load V _{ua} [lb]	Capacity o V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	80	4472	2	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	240	22105	2	OK
Concrete edge failure in direction y-**	240	4248	6	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-1917
ϕV_{ster}	_{el} ≥ V _{ua}	ACI 318-08 Eq. (D-2)

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.10	115000
Coloulations	

Calculations

V _{sa} [lb]	
6880	

Results

_

V _{sa} [lb]	∲ steel	φ V _{sa} [lb]	V _{ua} [lb]
6880	0.650	4472	80

4.2 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-31)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-08 Eq. (D-2)
A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\Psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{\rm b} = k_{\rm c} \lambda \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	3.250	0.000	0.000	4.000		
Ψ c,N	c _{ac} [in.]	k _c	λ	ŕ _c [psi]		
1.000	6.000	17	1	4000		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	$\psi_{\text{ed,N}}$	$\psi_{\text{cp,N}}$	N _b [lb]
251.83	95.06	1.000	1.000	0.946	1.000	6299
Results						
V _{cpg} [lb]	∲ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
31578	0.700	22105	240			

www.hilti.us		Profis Anchor 2.7
Company:	Page:	5
Specifier:	Project:	
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	7/11/2017
E-Mail:		

4.3 Concrete edge failure in direction y-

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-08 Eq. (D-22)
	ACI 318-08 Eq. (D-2)
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-08 Eq. (D-23)
$\Psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-08 Eq. (D-26)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-08 Eq. (D-28)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-08 Eq. (D-29)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-08 Eq. (D-24)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψc,V	h _a [in.]
4.000	4.000	0.000	1.000	8.000
l _e [in.]	λ	d _a [in.]	ť _c [psi]	Ψ parallel,V
3.250	1.000	0.500	4000	2.000

Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	Ψ ec,V	$\psi_{\text{ed,V}}$	$\psi_{h,V}$	V _b [lb]
60.00	72.00	1.000	1.000	1.000	3642
Results					
V _{cbg} [lb]	∮ concrete	φ V _{cbg} [lb]	V _{ua} [lb]		
6069	0.700	4248	240		

5 Combined tension and shear loads

βn	βv	ζ	Utilization _{βN,V} [%]	Status
0.87	5 0.056	1.000	78	OK

 $\beta_{NV} = (\beta_N + \beta_V) / 1.2 \le 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption
 is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for
 plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

Fastening meets the design criteria!

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Page:	
Project:	
Sub-Project I Pos. No.:	
Date:	

7/11/2017

6

7 Installation data

 Anchor plate, steel: Anchor type and diameter: Kwik Bolt TZ - SS 316 1/2 (3 1/4)

 Profile: no profile
 Installation torque: 480.001 in.lb

 Hole diameter in the fixture: df = 0.563 in.
 Hole diameter in the base material: 0.500 in.

 Plate thickness (input): 0.500 in.
 Hole depth in the base material: 4.000 in.

 Recommended plate thickness: not calculated
 Minimum thickness of the base material: 8.000 in.

 Drilling method: Hammer drilled
 Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

I

7.1 Recommended accessories

Drilling	Cleaning	Setting
 Suitable Rotary Hammer Properly sized drill bit 	 Manual blow-out pum 	 Torque controlled cordless impact tool (Hilti Safeset System) Torque wrench Hammer
	↓ ^y 1.250,250	
	0 1	★↓
		13.000
	• <mark>2</mark>	×
		13.000
	3 1.250.250	▼ .
Coordinates Anchor in.		
Anchor x y c., 1 0.000 12.000 4.00 2 0.000 0.000 4.00 3 0.000 -12.000 4.00	00 - 28.000 - 00 - 16.000 -	

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us			Profis Anchor 2	Z .,
Company:		Page:	7	
Specifier:		Project:		
Address:		Sub-Project I Pos. No.:		
Phone I Fax:	1	Date:	7/11/2017	
E-Mail:	·			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.